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Abstract—Ensuring laboratory safety is a critical challenge
due to the presence of hazardous materials and complex oper-
ational environments. In this paper, we develop an autonomous
laboratory inspection robot (ALARMbot) leveraging foundation
models for intelligent safety management. The system integrates
a mobile platform, multi-modal sensors, and a 6-DoF manipula-
tor. By fusing LiDAR-based mapping with vision-and-language
models, the robot achieves semantic navigation and fine-grained
functional zone recognition. A hierarchical framework combines
YOLOv8-OBB visual perception (achieving 93.1% mAP on
custom datasets) with vision-language risk reasoning for real-time
hazard detection. The robot autonomously intervenes in operable
risks with an average response time of 8.5 seconds and navigates
complex laboratory layouts with a 96.3% success rate. Extensive
real-world experiments demonstrate reliable navigation, accurate
risk detection, and effective hazard mitigation. This work offers a
practical solution for intelligent laboratory safety and highlights
the advantages of foundation models in autonomous inspection
robotics.

Index Terms—Laboratory inspection, Navigation, Foundation
models

I. INTRODUCTION

LABORATORY safety is a critical concern in research
and industrial environments, where hazardous chemicals,

complex instruments, and dynamic activities pose significant
risks to both personnel and facilities[1]. Traditional safety
inspections, typically performed by human operators, are
labor-intensive, error-prone, and often fail to provide timely
responses in rapidly changing or high-risk scenarios[2].

Recent advances in robotics and artificial intelligence have
enabled the development of autonomous inspection systems.
In particular, vision-based detection technologies have become
increasingly prominent due to their non-contact, real-time
monitoring capabilities [3], [4]. Deep learning-based object
detection and semantic analysis methods have demonstrated
strong adaptability and accuracy in identifying laboratory
hazards, including misplaced equipment, chemical spills, and
unsafe actions [5], [6]. Robotic platforms designed for in-
spection tasks now incorporate diverse mobility systems and
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multi-modal sensors, enabling them to navigate complex lab-
oratory layouts and interact with various objects [7], [8]. The
integration of simultaneous localization and mapping (SLAM)
algorithms and semantic mapping strategies further enhances
their ability to understand and operate within intricate envi-
ronments.

Despite these advancements, several challenges remain.
Existing systems often lack robust multi-task collaboration,
sufficient reliability in cluttered or extreme environments,
and effective human-robot interaction mechanisms. Moreover,
precise risk detection and autonomous mitigation—such as
upright positioning of tipped bottles or cleaning chemical
spills—require advanced perception and manipulation capa-
bilities that are not fully addressed by current approaches.

To address this, we propose an integrated robotic system
for laboratory safety inspection, combining a mobile platform,
multi-modal perception sensors, and a flexible manipulation
subsystem. The main contributions of this work are as follows:

• We develop a semantic-aware navigation framework that
fuses LiDAR-based mapping with vision-and-language
models, enabling natural language instruction following
and fine-grained semantic mapping in laboratory environ-
ments.

• We design a hierarchical inspection and risk mitigation
framework that leverages YOLO-based visual percep-
tion and vision-language reasoning to detect and au-
tonomously address laboratory hazards in real time.

• We introduce a modular manipulation strategy, allow-
ing the robot to autonomously execute risk mitigation
actions—such as upright positioning of fallen bottles,
cleaning spills, and sorting objects—based on structured
risk assessments.

• We implement and validate a web-based human–robot
interaction interface, supporting intuitive task assignment,
real-time monitoring, and traceable reporting, and demon-
strate the system’s effectiveness through extensive real-
world experiments.

The remainder of this paper is organized as follows. Section
II reviews the related work in vision-based safety detection
and robotic inspection systems. Section III introduces the
system design. Section IV describes the navigation and se-
mantic mapping strategy. Section V presents the inspection
and manipulation framework. Section VI reports experimental
results and Section VII concludes the paper.

II. RELATED WORK

A. Traditional Methods for Laboratory Safety Inspection
Traditional laboratory safety inspection methods primarily

rely on manual checks or classical computer vision algorithms.

https://alarm-bot.github.io
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Fig. 1. System architecture of the autonomous laboratory inspection framework. The system consists of three core modules: ChemistryNav for
navigation and semantic mapping, Detect Agent for risk detection and reasoning, and Inspect Agent for manipulation and user interaction. It enables
autonomous exploration and partitioning of unknown laboratory environments, performs real-time risk identification and corresponding mitigation actions
along the inspection route, and uploads structured results to the Web UI for visualization and logging.

Manual inspections are labor-intensive, time-consuming, and
prone to human error, especially in dynamic or hazardous envi-
ronments. Early automated systems adopted rule-based image
processing or classical machine learning techniques, such as
edge detection, color segmentation, and handcrafted feature
extraction, to identify laboratory equipment or hazards [9].
While these approaches offered some automation, their perfor-
mance was limited by poor generalization to diverse laboratory
conditions, sensitivity to lighting changes, and inability to
handle complex semantic tasks such as compliance verification
or context-aware risk assessment.

B. Vision-Based Safety Detection and VLMs

Recent advances in deep learning, especially vision-based
detection technologies, have significantly improved the capa-
bilities of automated safety inspection systems in complex
environments such as chemical laboratories. Deep learning-
based object detection and semantic analysis methods have
demonstrated strong adaptability and accuracy in identifying
laboratory hazards, including misplaced equipment, chemical
spills, and unsafe actions [3], [5], [4], [6]. Some studies further
integrate object detection with OCR for comprehensive scene
understanding [4], while others use vision-language models
(VLMs) for multi-stage semantic reasoning and compliance
verification [6].

In laboratory and industrial safety, these methods are in-
creasingly applied to tasks such as detecting misplaced equip-

ment, identifying chemical spills, and ensuring the correct
use of personal protective equipment (PPE) [3], [5], [10]. By
leveraging large-scale datasets and multi-modal learning, these
models achieve robust performance under various lighting,
clutter, and occlusion conditions, which are common in real-
world laboratory settings.

C. Robotic Inspection Systems in Laboratory Environments

Autonomous robots for laboratory inspection typically com-
bine mobile platforms, multi-modal perception, and manip-
ulation capabilities. State-of-the-art systems utilize wheeled
or hybrid mobile bases equipped with LiDAR and RGB-D
cameras for navigation and mapping [7], [8], [11], [12]. The
integration of simultaneous localization and mapping (SLAM)
with semantic scene understanding enables precise localization
and functional zone annotation, essential for targeted inspec-
tion and risk mitigation [8], [13].

Recent research also focuses on the role of modular manip-
ulation subsystems, such as 6-DoF robotic arms with adaptive
grippers, which extend the robot’s ability to intervene in
hazardous situations, including upright positioning of fallen
bottles and cleaning chemical spills [8]. Multi-robot collab-
oration and specialized platforms for extreme environments
have also been explored [14], [15], [13].

However, existing robotic inspection systems still face
several critical limitations:
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• Lack of Closed-Loop Risk Mitigation: Most current
systems focus solely on perception and detection, without
the ability to autonomously execute intervention or mit-
igation actions. When hazards are detected, the system
typically only issues alerts or records data, requiring
human intervention for actual risk handling.

• Separation of Perception and Manipulation: There
is a clear disconnect between the perception modules
(for hazard detection) and the manipulation modules (for
physical intervention). As a result, robots are unable to
seamlessly translate high-level semantic understanding or
risk assessment into effective, context-aware actions.

• Limited Autonomous Operation: Many systems operate
in a stepwise or semi-automatic manner, lacking the abil-
ity to perform end-to-end, fully autonomous inspection
and risk mitigation in complex and dynamic laboratory
environments.

• Insufficient Semantic Reasoning for Manipulation:
Even with advanced perception, existing systems rarely
leverage vision-language models to inform manipulation
strategies. This limits their ability to handle nuanced,
context-dependent tasks such as compliance verification
or adaptive risk response.

The integration of large foundation models and multi-modal
learning offers promising solutions for semantic perception,
flexible reasoning, and adaptive task planning in autonomous
laboratory inspection. However, the realization of a truly
closed-loop system, which is capable of both detecting and
autonomously mitigating risks, remains an open challenge.

III. HARDWARE DESIGN

As shown in Fig. 2, we design a robotic system tailored
specifically for inspection tasks in chemical laboratories. The
hardware consists of three modules: a mobile chassis, the
perception sensors, and a manipulation subsystem.
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Fig. 2. Overview of the robotic hardware platform and system architec-
ture. (a) Mobile manipulator platform used for laboratory inspection, equipped
with a 6-DoF robotic arm, RGB-D cameras, LiDAR, and an adaptive gripper.
(b) System architecture diagram illustrating the integration of perception,
planning, and control components via ROS on a central computing unit, with
remote monitoring enabled by SSH-based communication.

The mobile chassis utilizes the Ranger Mini 2.0 from
AgileX Robotics, featuring a compact design capable of dif-
ferential drive, omnidirectional, and translational movements,

making it well-suited for navigating in narrow and complex
laboratory environments. It is equipped with Ubuntu 18.04 and
ROS Melodic, facilitating seamless integration and algorithm
deployment. Environmental perception is provided by an Intel
RealSense D435i RGB-D camera and a RoboSense Helios
16-channel 3D LiDAR. The RGB-D camera captures syn-
chronized color and depth data, supplying rich semantic and
spatial information for navigation, while the LiDAR accurately
maps the 3D environment structure, significantly enhancing
navigation performance and safety. Both sensors utilize ROS-
compatible drivers, ensuring real-time data fusion and precise
sensor calibration, essential for accurate robotic manipulation
during movement.The manipulation subsystem consists of a
UFactory 6-DoF robotic arm paired with a DH Robotics AG-
160-95 adaptive gripper. The robotic arm provides flexible
6-DoF operation and ROS-based motion planning, while the
adaptive gripper reliably grasps objects of varying shapes and
sizes. An additional Intel RealSense D435i RGB-D camera
integrated onto the arm supports target recognition, localiza-
tion, and precise grasping, enabling robust task execution in
complex laboratory scenarios.

IV. NAVIGATION

Effective navigation is essential for autonomous laboratory
inspection, requiring both accurate spatial localization and
a deep understanding of complex environments. To address
this, we developed a navigation system that integrates high-
precision LiDAR-based mapping with vision-language models,
enabling the robot to follow natural language instructions
while constructing detailed semantic maps. This section de-
scribes our navigation strategy, including navigation archi-
tecture, full-floor exploration, laboratory identification, and
functional lab zone annotation.

A. Semantic-Mapping Navigation Architecture

To address the specific challenges in laboratory environ-
ments, we reference the latest advancements in Vision-and-
Language Navigation (VLN) and propose a semantic-driven,
high-precision navigation framework that enables the robot to
perform environment exploration and high-precision mapping
based on instructions.

As shown in Fig. 3, the input to our VLN framework in-
cludes RGB image frames from visual sensors and instructions
provided by humans. Given a specific navigation instruction,
the Query Generator (frozen during training) formulates tar-
geted queries. Simultaneously, the Vision Encoder processes
the input RGB image frames to extract rich visual feature
representations. The generated queries and visual features are
then projected through dedicated Modality Fusion Projectors,
producing instruction-aligned query tokens and image tokens.
These tokens are subsequently integrated within our unified
Observation Encoder. At each timestep, historical and current
observations (denoted by [HIS] and [OBS]) are encoded
alongside navigation-oriented tokens ([NAV])[16]. These com-
bined tokens are then processed by an end-to-end VLM, named
ChemistryNav, which generates explicit navigation actions
based on natural language instructions.
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Fig. 3. The overview of ChemistryNav. Based on navigation instructions and multimodal sensor inputs—including RGB images and LiDAR scans—the
system generates query tokens and image tokens through dedicated Modality Fusion Projectors, integrating them within a unified Observation Encoder. At
each timestep, ChemistryNav processes both historical and current observations alongside navigation-oriented tokens to produce explicit navigation actions.
Real-time robot positions, acquired via precisely calibrated LiDAR sensors, are dynamically aligned with an evolving Fine-Grained Semantic Map, providing
comprehensive semantic and spatial information essential for effective dynamic route planning and targeted risk management tasks.

During robot movement driven by output action results, real-
time position data from precisely calibrated LiDAR sensors
is continuously recorded and dynamically aligned with the
evolving semantic map. This map encodes key environmental
regions with semantic labels, supporting spatial reasoning and
memory essential for navigation decision-making.

Upon completion of the exploration tasks, the resulting
map not only provides high spatial accuracy but also contains
rich semantic information. This detailed semantic map thus
provides the necessary spatial coordinates and contextual
knowledge to support subsequent dynamic route planning and
targeted risk management operations.

B. Full-Floor Exploration and Laboratory Identification

Based on VLN, we designed a strategy for exploring the
laboratory floor to identify specific rooms. This approach
balances extensive spatial exploration with semantic under-
standing, ensuring comprehensive mapping and accurate room
identification, as illustrated in Fig. 4.

The process begins with instructing the agent to explore
the entire floor. The prompt guides the agent to identify all
rooms with open doors and mark their locations: “You are on
a floor with multiple rooms, each with an open door. Find
all laboratory rooms and mark their locations. Your goal is
to identify and locate all laboratory rooms based on these
images.” This ensures thorough exploration and relevant image
capture for room identification.

During exploration, the robot uses a front-mounted camera
and a VLM, named Inspect Agent, to evaluate if each room
has key laboratory features. The VLM assesses predefined
features such as laboratory equipment, experimental setups,

Prompt: Scan the floor, locate all rooms and doors. Identify 

and label laboratory rooms on the map with its location.

Sematic 

LiDAR Map

Trajectory

Lab

Lab

Lab

Lab Label Location

Fig. 4. Full-floor exploration schematic. User prompts trigger the robot to
visit each room, record whether it is a laboratory, tag its location, and store
the data for designing a comprehensive cross-room inspection route.

and chemical storage. Rooms scoring higher than 0.8 are
identified as laboratories. The scoring system includes:

• Laboratory Equipment (40%): Presence of laboratory
equipment like reagent bottles, analytical instruments, etc.

• Laboratory Facilities (30%): Workbenches or experi-
mental tables, organized for experimental purposes.

• Chemical Materials (20%): Visible chemical containers
or storage cabinets.

• Environmental Cleanliness (10%): Clean and organized
room suggesting a controlled research environment.
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Fig. 5. Workbench recognition and functional zone classification. Once the robot reaches an appropriate position near a workbench, the camera mounted on
the robotic arm captures desktop images, which are processed by the Inspect Agent to identify objects on the workbench and assign a unique functional-zone
label based on predefined criteria.

This helps prioritize rooms suitable for further inspection.
As the VLM processes visual data, it aligns with a LiDAR-

generated map, marking potential laboratory entrances for
future navigation. After exploration, the agent returns to these
identified coordinates for subsequent tasks. This strategy en-
sures reliable zone identification and task execution in the
identified laboratory rooms.

C. Laboratory Mapping and Functional Zone Annotation

After identifying the laboratory rooms across the floor,
we proceed to perform fine-grained exploration within each
laboratory. Given that laboratory interiors are typically divided
into distinct functional zones, we have developed a laboratory
exploration and zoning classification strategy to ensure that
the navigation agent can efficiently and accurately identify and
label all workbenches and their corresponding functional areas.

At this stage, the agent operates according to the following
prompt: “You have entered a laboratory room. Your task
is to conduct a thorough exploration to identify and label
all workbenches. Each workbench corresponds to a specific
functional zone. You must approach each workbench, capture
detailed images of its surface, and determine the correspond-
ing functional zone based on the observed items. Ensure that
no workbench is missed, and that each is accurately labeled.”

To simulate realistic chemical laboratory environments, we
have constructed diverse functional scenarios across different
workbenches. These scenarios are designed to reflect typical
laboratory zones, defined as follows:

• Experimental Operation Zone: Dedicated to routine
chemical experiments, featuring simulated experimental

processes, laboratory equipment, and active reaction en-
vironments.

• Chemical Storage Zone: Used for the organized storage
of chemical reagents, with chemicals categorized by prop-
erties and containers labeled with names, concentrations,
and hazard symbols for safe handling.

• Instrument and Equipment Zone: Contains clean in-
struments and reagent bottles, neatly arranged for quick
access by laboratory personnel.

• Cleaning and Sterilization Zone: For washing glass-
ware, disinfecting tools, and preliminary wastewater treat-
ment, equipped with sanitation facilities for a safe, hy-
gienic environment.

• Auxiliary and Office Zone: Used for document storage,
data recording, and providing workspace for lab staff.

These configurations ensure a comprehensive representation
of functional areas, enabling the navigation agent to perform
accurate semantic recognition and labeling during exploration.

To carry out the exploration tasks, the agent uses two cam-
eras: one for room-level navigation and spatial understanding,
and the other mounted on the robotic arm to capture detailed
images of workbenches. The agent uses the front camera for
initial scans and detecting workbench locations, with real-time
depth data processing to ensure safe and precise approach.
Once at the correct vantage point, the arm-mounted camera
captures workbench images, which are processed by a VLM
to analyze visible items and assign functional zones. The VLM
outputs labels for each workbench, shown in Fig. 5. Each
workbench’s position and functional zone are annotated on a
high-resolution 2D map, created with onboard LiDAR sensors,
serving as a reference for subsequent tasks.
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Fig. 6. Overview of the laboratory risk detection framework. The Visual Perception Module utilizes a YOLOv8 model trained on real-world, public,
and synthetic datasets to detect objects from images collected along the inspection route. The detection results are post-processed into a structured JSON
format, paired with prompt queries, and fed into the Detect Agent for risk reasoning. The identified risks are subsequently passed to the Inspect Agent to
drive downstream decision-making and action planning.

After completing the exploration and classification, the
agent compiles a complete semantic map showing the spatial
distribution and functional categorization of work areas. The
agent then proceeds to the next laboratory room, continuing
until all rooms are explored and annotated, generating a
detailed semantic representation of the laboratory environment
for future inspection and monitoring tasks.

V. RISK HANDLING

After completing environment mapping and establishing the
inspection route, the system enters the laboratory inspection
phase. A two-stage detection framework, comprising a YOLO-
based Visual Perception Module and a VLM-based Risk Rea-
soning Module, performs real-time object detection and hazard
inference. The structured detection outputs are forwarded to
the Inspect Agent, which serves as the high-level decision-
making core. Based on the inferred risks, the agent plans
appropriate actions or archives the information and uploads
both risk assessments and execution results to the Interaction
UI for human monitoring and record-keeping.

A. VLM-based Detection System

In the autonomous laboratory inspection workflow, the
robot’s initial route is planned to cover key functional zones,
such as experimental workbenches and chemical storage areas.
During real-time execution, the robot dynamically updates its
navigation path for obstacle avoidance and captures images at
predefined checkpoints. Each captured image is immediately
transmitted to the risk detection module for real-time analysis,
as illustrated in Fig. 6.

The detection system consists of two core modules: a
YOLO-based Visual Perception Module and a VLM-based

Detect Agent. Together, they perform semantic analysis of
real-time visual data, identify potential safety hazards, and
output structured risk information to support downstream
robotic actions.

The Visual Perception Module is implemented using
YOLOv8-OBB, which supports oriented bounding box detec-
tion for precise object localization in cluttered and rotated lab-
oratory environments. To enhance generalization and robust-
ness, we constructed a composite training dataset aggregated
from three heterogeneous sources:

• Real-World Data: Approximately 1,000 images col-
lected from laboratory environments, featuring common
apparatuses (e.g., beakers, Erlenmeyer flasks, reagent
bottles) under various layouts and lighting conditions.

• Public Datasets: Around 3,000 open-source images cov-
ering typical laboratory setups [17], [18].

• Synthetic Transparent Object Data: Approximately
1,000 images were generated by rendering CAD models
of transparent laboratory containers, including reagent
bottles, beakers, and Erlenmeyer flasks. We employed
physically-based rendering techniques with randomized
backgrounds and lighting conditions to create diverse and
high-fidelity images, enhancing detection performance for
low-contrast transparent objects.

The trained YOLO model detects objects with associated
class labels, spatial coordinates, and rotation angles. Detection
outputs are postprocessed into a structured JSON format,
serving as input for subsequent reasoning and interaction.

To enable higher-level risk inference, we introduce the
Detect Agent, built upon the open source InternVL2.5-4B
model and fine-tuned for laboratory-specific semantic rea-
soning tasks. During fine-tuning, approximately 1,000 image-
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Fig. 7. Overview of the autonomous risk mitigation and execution framework. The Inspect Agent receives structured detection results containing identified
objects and inferred risks. It performs risk reasoning and action planning through three stages: Risk Matching, Template Retrieval, and Meta-Action Sequencing.
Based on predefined Meta-Action Skills, the system composes executable motion sequences, which are then carried out by the robotic manipulator. Execution
results, including success or warnings, are uploaded to the Interaction UI for monitoring and logging.

text pairs were constructed based on outputs from the Visual
Perception Module. Each sample includes:

• Image: Captured and processed by the YOLO module.
• Text prompt: Structured object descriptions (e.g., ‘Object

1: Erlenmeyer flask, angle 15°, center [240, 180]’), fol-
lowed by a guiding question (e.g., ‘Are there any potential
hazards on the laboratory workbench?’).

• Answer: Human-annotated risk descriptions (e.g., ‘The
Erlenmeyer flask at position 1 may tip over.’).

After fine-tuning, the Detect Agent accepts structured JSON
inputs, performs multimodal reasoning to infer safety risks,
and outputs structured feedback including risk types, asso-
ciated object IDs, positions, and orientations. These results
are subsequently passed to the Inspect Agent for downstream
action execution and user-facing reporting.

B. Autonomous Risk Mitigation and Action Planning

After completing risk detection, the system enters the
manipulation phase, where detected risks are assessed for
automated mitigation or information archiving.

We introduce the Inspect Agent, a multimodal VLM serving
as the high-level decision-making core. It receives structured
image-text pairs from the detection phase and generates risk
response strategies through multi-turn prompting. Internally,
Inspect Agent employs a risk dictionary-based reasoning
mechanism: when a detected risk matches a keyword in the
predefined operable risk dictionary, the agent retrieves the
corresponding action template and generates executable meta-
action sequences; otherwise, the risk is categorized as non-
operable and escalated for reporting. The overall risk reasoning
and action planning process is illustrated in Fig. 7.

The manipulation phase consists of three operational modes:

Mode 1: No-Risk Reporting. If no risks are detected, the
system packages the image, navigation position, and times-
tamp into an Info packet, uploading it to the Interaction UI
for archiving and traceability.

Mode 2: Non-Executable Risk. For non-operable risks
(e.g., uncovered hazardous chemicals, open flames), the sys-
tem encapsulates the relevant information into an Error packet
and issues an alert via the Interaction UI. When operable and
non-operable risks coexist, operable risks are prioritized for
mitigation.

Mode 3: Executable Risk. For operable risks (e.g., tipped
bottles, scattered debris), Inspect Agent dynamically generates
a meta-action sequence based on the “Laboratory Risk Mitiga-
tion Guide” prompt and detected bounding box information.
Action templates are retrieved based on the risk type, with
parameters like 3D positions and orientations adjusted in a
real-time manner.

To enable flexible execution, we design a modular Meta-
Action API system encompassing:

• End-Effector Motion: Move the robotic end-effector
toward a target 3D position.

• Target Localization: Extract 3D coordinates of targets.
• Gripper Actuation: Control the gripper for object grasp-

ing or releasing.
• Waypoint Insertion: Insert intermediate points into the

motion trajectory to reduce collision risk.
• Height-Constrained Motion: Maintain safe height to

avoid table clutter or obstacles.
• Orientation Alignment: Adjust the end-effector orienta-

tion for optimal grasp stability.

Meta-actions are flexibly composed to form complete ac-
tion sequences adapted to the current scenario. All actions
rely on depth-calibrated spatial localization, and intermediate
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Fig. 8. Robot inspection experiment. Upon receiving the inspection command, the robot follows the predefined inspection route based on zone planning,
and performs risk identification and labeling by analyzing the tabletop conditions captured by the camera, referencing the designated zones.

waypoints are incorporated for operational robustness.
The meta-action execution system currently does not imple-

ment retries. Upon task initiation, a pre-execution image and
metadata are uploaded as an Error packet to the Interaction UI
to mark the risk. After execution, whether successful or not,
a post-execution image and status are uploaded as a Warning
packet. The system then proceeds to the next inspection task
without interruption.

When multiple risks are detected, the system prioritizes
mitigating all operable risks before reporting non-operable
risks, ensuring timely intervention for controllable hazards.

VI. EXPERIMENTS

A comprehensive evaluation of our proposed robotic sys-
tem was conducted in unfamiliar laboratory environments,
assessing navigation performance, risk-detection accuracy, and
risk-elimination manipulation. We also developed an intu-
itive human–robot interaction interface that accepts natural-
language commands, enabling the robot to execute tasks with
stability and precision. Experimental results demonstrate that
the system delivers high reliability and robustness in complex
and dynamic scenes.

A. Navigation Performance

Our ChemistryNav navigation framework runs in real time
on a single RTX-4090 server and connects to the inspect agent
via SSH. Predefined APIs process user instructions and pre-
loaded prompts, parse live video from the vehicle-mounted
camera, and generate corresponding motion commands.

To evaluate the practicality and robustness of ChemistryNav
in real-world lab environments, we conducted deployment
experiments focused on the robot’s autonomous navigation.
The experiment includes two main tasks: Full-Floor Explo-
ration and Autonomous Laboratory Inspection. The robot
autonomously explores an unknown environment, performs lab
localization, identifies functional zones, and designs inspection
paths for preparatory tasks before operation.

In the inspection experiment, the robot achieved an average
response time of 8.5 s from command issuance to execution,
with an average inspection success rate of 96.3%, demonstrat-
ing significant improvements using semantic-guided naviga-
tion. This strategy enabled efficient identification and semantic
labeling of experimental areas, surpassing traditional methods
in path control and deviation suppression. In complex en-
vironments, semantic-based dynamic adjustments effectively
prevented detours and misjudgments. Real-time updates of
the fine-grained semantic map maintained accurate alignment
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Fig. 9. Robotic execution of risk-handling tasks in the laboratory environment. (a) Upright two fallen transparent wide-mouth bottles to their vertical
position. (b) Move a transparent conical flask away from the table edge toward a safer inner region. (c) Upright a fallen bottle and place it onto an empty
slot of the visible bottle rack. (d) Use a sponge picked from the onboard storage basket to wipe spilled liquid on the tabletop. (e) Grasp trash items and place
them into the onboard waste bin. (f) Sort transparent and opaque reagent bottles into correct categories. (g) Transfer solution-filled test tubes from one rack
to another.

between robot positioning and environmental data, enhancing
task stability and providing reliable support for subsequent risk
detection and mitigation.

As shown in Fig. 8, during inspection, the robot follows a
predefined route and adjusts the path based on environmental
changes, performing risk assessments and operations in each
area to successfully complete the inspection task.

B. Detection and Risk Reasoning Performance

The system employs a YOLOv8-OBB model to detect
laboratory objects, including their categories, positions, and

orientations. The model is trained on a combined dataset
consisting of 3,000 public laboratory images, 1,000 real-world
captured images, and 1000 synthetically generated transparent
object images. The evaluation results on a held-out test set of
800 images are summarized in Table I.

To further investigate the impact of training data com-
position, an ablation study is conducted, comparing three
configurations: Public only, Public + Real, and Public +
Real + Synthetic. The overall detection success rates and
transparent wide-mouth bottle detection rates are reported in
Table I. As shown in the table, adding real-world captured
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TABLE I
ABLATION STUDY ON TRAINING DATA COMPOSITION AND DETECTION

SUCCESS RATES.

Training Data Overall SR (%) Transparent Object SR (%)

Public only 85.2 68.1
Public + Real 89.7 74.3
Public + Real + Synthetic 93.1 88.6

data improves the overall success rate from 85.2% to 89.7%.
Further incorporating synthetic transparent object data boosts
the overall detection success to 93.1%. Notably, the success
rate for detecting transparent wide-mouth bottles increases
dramatically from 68.1% to 88.6%, highlighting the significant
benefit of synthetic data in enhancing the detection of low-
contrast transparent objects.

Based on the detection outputs, the Detect Agent infers as-
sociated laboratory risks for each detected object. Manual ver-
ification indicates that the risk classification accuracy reaches
93.5%, demonstrating the agent’s reliability and applicability
in autonomous inspection tasks.

C. Action Execution Performance

To evaluate the system’s capability for autonomous labo-
ratory risk mitigation, we designed a series of representative
task experiments, as illustrated in Fig. 9. The tasks include:
(a) upright fallen bottles; (b) relocate edge-exposed objects;
(c) place tipped bottles onto racks; (d) wipe spilled liquids;
(e) clear debris from workbenches; (f) sort unclassified reagent
bottles; and (g) transfer misplaced tubes. Each task was inde-
pendently tested over 20 trials, recording both action execution
status and final task outcomes. Two evaluation metrics were
used:

• Action Success Rate: The proportion of trials where
all meta-actions (e.g., localization, grasping, moving,
placing) were successfully executed.

• Task Completion Rate: The proportion of trials where
the risk was completely mitigated after execution.

TABLE II
ACTION EXECUTION AND TASK COMPLETION SUCCESS RATES ACROSS

DIFFERENT RISK-HANDLING TASKS.

Risk Handling Task Action Success
Rate (%)

Task Completion
Rate (%)

Upright Fallen Bottles 100.0 95.0
Relocate Bottles to Safe Zone 100.0 90.0

Place Bottles onto Rack 85.0 80.0
Wipe Spilled Liquid 90.0 70.0

Clear Trash from Workbench 90.0 85.0
Sort Reagent Bottles 85.0 80.0
Transfer Test Tubes 85.0 70.0

Overall Average 90.7 81.4

The detailed results are summarized in Table II. Overall, the
system achieves an Action Success Rate exceeding 90% and
a Task Completion Rate exceeding 80%. In structured tasks
such as bottle uprighting and reagent bottle sorting, success

rates remained consistently high. In contrast, more challenging
tasks like liquid wiping and tube transferring exhibited slightly
lower rates, primarily due to higher precision requirements
where minor deviations impacted final task outcomes. These
results demonstrate the effectiveness of combining vision-
language reasoning with meta-action sequence control for
autonomous laboratory risk mitigation, while also identifying
opportunities for further improvements in precision-critical
manipulations.

D. Interaction UI

To enhance human–robot interaction, we developed a
web-based user interface that communicates in real time with
VLM API. The UI lets operators issue commands to the robot
and receive live status updates for each workspace zone.

The Inspect agent, responsible for human interaction, is
implemented via the GPT-4V API running on an onboard
Nvidia Jetson Nano, providing convenient access to vehicle
peripherals. Upon receiving human task commands, the agent
interprets and dispatches them to the appropriate backend
modules—navigation and manipulation—through predefined
APIs. The responses are displayed on the user interface.

For mobility, the Inspect agent communicates with the
ChemistryNav navigation agent, retrieving motion commands
that are relayed as ROS messages to the robotic base’s
motion controller. For risk assessment, the agent interacts
with the detection agent, analyzing captured images and risk
data (e.g., hazard type and location), determining whether the
risks can be autonomously resolved or need escalation. Real-
time log reports are generated, including timestamps, spatial
coordinates, message types (Info /Warning /Error), Inspect
Agent responses (risk assessments or operational outcomes),
and relevant images.

ChemistryChat

Start Lab Exploration and Mapping.

Time: [2025-03-26 21:36:13]

Location: [100.0341, 100.1562]

INFO:

Start Lab Exploration.

Time: [2025-03-26 21:41:54]

Location: [100.2005, 99.8541]

INFO:

Lab Exploration Finish. Map 

data stored successfully.

Start Lab Inspection.

Time: [2025-03-26 21:44:28]

Location: [85.0064, 176.2690]

INFO:

No Risk Found.

ChemistryChat

Time: [2025-03-26 21:45:14]

Location: [87.2655, 248.0327]

ERROR: 

Risk Found !!

Type:

Time: [2025-03-26 21:46:42]

Location: [87.2701, 248.0390]

WARNING: 

Risk has been handled.

SendType your message…

Fig. 10. Screenshot of the Web-based UI. Commands sent to the In-
spect agent launch exploration and inspection tasks, while the agent returns
real-time status in a predefined format reporting, e.g., whether exploration has
finished, whether any risks were detected during inspection, and so on.

As shown in Fig. 10, issuing an Exploration command
triggers automatic vision-language navigation (VLN), gener-
ating a high-precision 2D semantic map with functional zones
and inspection paths. When an Inspection command is given,
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the robot dynamically plans its route and outputs messages
indicating identified issues in each zone.

VII. CONCLUSION

This paper presents an autonomous laboratory inspection
robot (ALARMbot) that leverages foundation models for intel-
ligent safety management in complex laboratory environments.
The proposed system integrates a mobile platform, multi-
modal perception (including LiDAR and RGB-D cameras),
and a 6-DoF manipulator, enabling comprehensive inspec-
tion and intervention tasks. By fusing LiDAR-based mapping
with vision-and-language models, the robot achieves semantic-
aware navigation and fine-grained functional zone recognition.
The hierarchical framework combines YOLOv8-OBB visual
perception (achieving 93.1% mAP on custom datasets) with
vision-language risk reasoning for real-time hazard detection
and analysis. Experimental results demonstrate that the robot
autonomously intervenes in operable risks with an average
response time of 8.5 seconds and navigates complex laboratory
layouts with a 96.3% success rate, ensuring reliable and
effective hazard mitigation. The core innovations of this work
include the integration of foundation models for semantic
perception and risk reasoning, as well as a modular manip-
ulation system for autonomous intervention. In the future, this
approach can be extended to other high-risk environments
such as industrial plants and chemical warehouses. Further
research will focus on enhancing multi-robot collaboration,
adaptive learning in dynamic scenarios, and deeper human-
robot interaction to achieve more intelligent and scalable safety
management solutions.
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